Course Specifications

Programme(s) on which the course is given: Post-Graduate (Hydro-Petroleum)

Major or Minor element of programmes: Major Department offering the programme: Geology Department offering the course: Geology Academic year / Level: 00/ Post-Graduate

Date of specification approval:

a-Basic Information

Title: Hydrogeochemistry **Code:** G671

Credit Hours: 2 Credits Lecture: 2 Credit

Hours

Tutorial: 2 Practical: - Total: 2 Credits

b-Professional Information

1 – Overall Aims of Course:

- **a-** Explore and develop the basic principles, concepts and ideas in groundwater mechanics and movements.
- **b-** Apply the ideas in groundwater hydrogeology with other tenets from geology to answer questions (Applications).
- c- Develop arguments to support conclusions and apply reasoning skills to scientific methods

2 – Intended Learning Outcomes of Course (ILOs)

- a-Knowledge and Understanding: By the end of this course, the student should be able to:
 - **a1-** Learn to effectively communicate orally and through written Ideas, arguments and solution in either formal and informal setting (Communication).
 - **a3-** acquiring in-depth the knowledge of the relation between groundwater resources and demands.

b-Intellectual Skills: By the end of this course, the student should be able to:

- **b1-** calculate recharge and discharge rates .
- **b2-** classify recharge and discharge elements.
- **b3-** apply the appropriate solution technique leading groundwater problems .
- c- **Professional and Practical Skills:** By the end of this course, the student should be able to:

d-General and Transferable Skills: By the end of this course, the student should be able to:

- ${f d1}{\mbox{-}}$ interpret the results of hydrogeological studies.
- **d2-** work as a part of team.
- **d3-** solve hydrogeological problems.

3. Contents

Торіс	Credit hours	Lecture
Review of Hydrology/ groundwater occurrences/ aquifer parameters	2	2
Fluid mechanics and groundwater movement	2	2
Well hydraulics	2	2
Puming tests	4	4
Pumping test data analyses /Steady state/ unsteady state	2	2
Case study (Nubian sandstone in Western desert)	4	4
Project presentation	2	2
Total	28	28

4 - Teaching and Learning Methods

4.1- lectures.

5- Student Assessment Methods

Assessment Schedule

Assessment 1: short exam (class activities) every two weeks.

Assessment 2: mid-term (written) week 7
Assessment 3: final-term (written) week 14- 15

Assessment Schedule

Assessment 1: short exam (class activities) every two weeks.

Assessment 2: mid-term (written and practical) week 7
Assessment 3: final-term (written and practical) Week 12-

Weighting of Assessments

Written

Mid-Term Examination:20%Written Final-term Examination:60%Semester Work (including reports, oral and discussion):20%Total:100%

6- List of References

6.1- Course Notes: Prepared by staff members

6.2- Essential Books (Text Books):

Fetter, C. W. (2001): Applied hydrogeology

Surface hydrogeology

6.3- Recommended Books:

6.4- Periodicals, Web Sites, ... etc Journal of hydrogeology

7- Facilities Required for Teaching and Learning

Data show, lab instruments, field trip

Course Coordinator: Prof. Kamal Dahab

Head of Department: Prof. Ahmed Al-Boghdady

Date: //2012